SCE Fault Locating, Prediction and Protection Project

Southern California Edison DOE Peer Review, Golden, CO November 2, 2010

Southern California Edison

- 50,000 square miles
- ~23,000 MW peak demand
- 4.8 million customers
- 11 million people served
- 845 cities and communities

DOE Project - Completed

- Advanced Protection Methods on the Circuit of the Future
 - July 2006 to June 2010
- Three tasks:
 - Design and test new distribution protection scheme
 - Design and test distribution protection scheme with fault current limiter
 - Investigate, design and test advanced fault location, sensing and prediction methods
- Other Team Members:
 - KEMA Dr. S. S. Venkata
 - Virginia Tech Dr. Virgilio Centeno

Project Benefits

- Reduce number of customers seeing outage
- Reduce duration of outages for most customers
- Better locate faults and dispatch crews to problem quickly
- Reduce equipment cost
- More flexible protection to help with integration of DG/ renewables

Schedule

- Task 1 New Protection Scheme
 - Initial operation 8/2007
 - Dedication 10/2007
 - Monitor the performance of the protection system
- Task 2 Protection w/FCL
 - Model FCL 2008 through early 2009
 - Put FCL in service 3/2009
 - Monitor the performance of the protection system
- Task 3 Advanced Protection
 - Evaluate measures 2009
 - Design, model Irvine Smart Grid Demo protection system 2010

Task 1 – Protection on the CoF

- Performed literature review
- Distributed questionnaire about advanced protection practices and projects
- Prepared summary of both
- Installed advanced fault detection and isolation system on the SCE Circuit of the Future
- Monitored behavior of protection system

Literature Review/Survey Summary

- Drivers for fault location, detection and prediction
 - Improvement of system reliability
 - System automation
 - Increased customer focus
 - Distributed generation/ renewables
- Key technologies
 - Affordable IEDs
 - Better transducers/ sensors
 - Accessible communications channels
- Level of development and acceptance of each of these technologies determine the time frame for implementation

Circuit of the Future (CoF)

- New circuit
- Approximately 23,000 amps fault duty
- Serves approximately 2,000 customers
- Overhead / underground facilities
- New hardware and protection schemes
- High-speed communications with fiber

Circuit Features

Trip Blocking Scheme

Lab Testing and Training – Summer 2007

Circuit Fault Status – Four Faults Recorded

- 10/21/2007 (high winds)
 - Relay pick-ups, but no trip
- 12/25/2007 (high winds)
 - Protection operated correctly
 - Post-fault isolate function did not work due to problem with voltage sensor location
 - Problem corrected Summer 2008
- 11/14/2008 (high winds)
 - Protection and isolation operated correctly
 - Most customers restored in minutes
- 1/30/2009 (high winds)
 - Protection and isolation operated correctly
 - Most customers restored in minutes

Task 2 - Protection with FCL

- Investigate and model protection changes necessary
 - Obtain/ construct model for Zenergy superconducting FCL and circuit
 - No changes needed due to reduced fault current
 - No changes needed due to distorted wave shapes
 - Bypass switch could be operated safely
- Commission fault current limiter (2/2009)

Magnet Disconnection Event (3/16/2009)

- De-energize superconducting magnet
 - Caused by processor reboot
 - Insert FCL impedance
 - Initially, 4% rise in voltage caused by resonance with capacitors
 - Capacitor trip cause 4% reduction
 - Another capacitor turn on causing 3% voltage rise
 - FCL bypassed
- Models upgraded to simulate the event accurately
- Repairs made and re-energized on 12/18/2009

Fault with FCL in Service (1/14/2010)

- FCL properly limited fault current
 - 8% fault current reduction
 - Matched what expected from fault current tests and models
- Harmonics
 - FCL insertion increases current harmonics < 0.5% THD
 - Voltage increase from 1-1.5% steady-state to 2-5% during fault
 - Current increase from 4-5% steady-state to 6-16% during fault

Task 3 - Advanced Protection Schemes

- Evaluate measures and select most promising ones for modeling/implementation (focus on standards)
- Measures implemented:
 - Measure power quality upstream and downstream of the FCL
 - De-centralized sensing, control, protection, and automation
 - Design and model the System of the Future relay protection system
- System of the Future protection improvements over CoF
 - Loop two circuits to eliminate loss of power to customers beyond the faulted section
 - Implement low-latency radio in place of costly fiber communications for fault interrupting switches
 - Distribute protection logic in each relay

Advanced Protection on the System of the Future

- Use fault-interrupting switches with relays supporting IEC 61850
- Use Ethernet-based radio communications
- Communicate using GOOSE messaging (IEC 61850)
- GOOSE message latency allowed to be 100 ms
- Use substation breaker as backup
- Intelligence located in each relay
- This project designed logic and built model of the circuits
- Construct and implement under DOE ARRA Irvine Smart Grid Demo project

Technology Transfer and Collaborations

- Presentations at conferences and meetings
 - IEEE T&D
 - Several EPRI PQA/ADA (now PQA/SD) meetings
 - Share information with EPRI fault anticipation project
 - Northwest Energy Symposium
 - IEEE PES meetings
- Updated regulatory agencies
 - California PUC
 - California Energy Commission
- Public dedication of Circuit of the Future

Recommendations

- De-centralize sensing, control, protection, and automation
 - New sensors
 - Distributed intelligence
 - Distribution system communications
 - Real-time analysis and control
- Advanced and adaptive protection
 - Integration of renewable generation (distribution-based)
 - Microgrid protection
- Advanced DMS system with supervisory control over:
 - protection settings
 - Volt/VAR settings
 - Demand response operations
 - Distributed generation and storage use

Contact Information

- Bob Yinger
- Consulting Engineer
- Southern California Edison
- 714-379-7913
- Robert.yinger@SCE.com